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Extracorporeal Shock Wave Therapy: Current Evidence
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Objectives: The aim of this article is to provide a concise review of

the basic science of extracorporeal shock wave therapy (ESWT) and

to perform a systematic review of the literature for the use of ESWT

in the treatment of fractures and delayed unions/nonunions.

Data Sources: Articles in the English or German language were

identified for the systematic review by searching PubMed-MEDLINE

from 1966 until 2008, Cochrane Database of Systematic Reviews,

Cochrane Database of Abstracts of Reviews of Effects, Cochrane

Central Register of Controlled Trials, and relevant meeting abstracts

from 2007 to 2008. Moreover, the bibliographies of the identified

articles were reviewed.

Study Selection:We included clinical outcome studies of ESWT in

the treatment of fractures and delayed unions/nonunions. Reports

with less than 10 patients were excluded. Nonunions after corrective

osteotomies or arthrodeses were excluded.

Data Extraction: Sample size, level of evidence, definition of

delayed union, definition of nonunion, time from injury to shock

wave treatment, location of fracture, union rate, and complications

were extracted from the identified articles.

Data Synthesis: Data of 924 patients undergoing ESWT for

delayed union/nonunion were extracted from 10 studies. All articles

were graded as level 4 studies. The overall union rate was 76% (95%

confidence interval 73%–79%). The union rate was significantly

higher in hypertrophic nonunions than in atrophic nonunions.

Conclusion: Data from level 4 studies suggest that shock wave

therapy seems to stimulate the healing process in delayed unions/

nonunions. However, further investigations are required.

(J Orthop Trauma 2010;24:S66–S70)

INTRODUCTION
Advances in the operative treatment of long-bone fractures

continue to improve patient outcomes. About 5%–10% of the
5.6 million fractures that occur annually in the United States
are complicated by delayed union or nonunion.1 The surgical
treatment of delayed unions/nonunions remains challenging
and usually requires bone grafting and revision open reduction
and internal fixation. With modern state-of-the-art
surgical techniques, the majority of nonunions can be treated
successfully.2–5 However, the surgical treatment is usually
associated with additional hospital days, comorbidity from
the surgical procedure, and significant socioeconomic costs.6

In an effort to decrease patient morbidity and health care costs,
the use of noninvasive methods, such as the extracorporeal
shock wave therapy (ESWT), seems to be a valuable
alternative in the treatment of delayed unions and nonunions.

ESWT has been suggested for the treatment of various
musculoskeletal disorders such as plantar fasciitis, lateral
epicondylitis, calcifying tendinitis, and avascular necrosis of
the femoral head.7–13 Moreover, ESWT has also been sug-
gested as a stimulator of bone healing, and it has been
employed in the treatment of delayed union/nonunion.14 The
exact pathway by which ESWT may exert its effect on bone
healing remains the subject of ongoing experimental inves-
tigations. The aim of this article is to provide a concise review
of the basic science of ESWT on fracture healing and to
systematically review the current evidence in the literature for
the use of ESWT in the treatment of fractures and delayed
unions/nonunions.

BASIC SCIENCE OF ESWT
Shock waves are single high-amplitude sound waves

generated by electrohydraulic, electromagnetic, or piezoelec-
tric methods that propagate in tissue with a sudden rise from
ambient pressure to its maximum pressure at the wave front,
followed by lower tensile amplitude.15 According to the
International Society for Medical Shockwave Treatment
(ISMST) (www.ismst.com; accessed December 22, 2008),
a shock wave is defined as a sonic pulse characterized by
a high peak pressure (500 bar), a short life cycle (10 ms),
fast pressure rise (,10 ns), and a broad frequency spectrum
(16–20 MHz). The shock waves are focused to a zone of
highest energy in front of the applicator and therefore reach
highest energy concentration in the focus zone within the
treated tissue. The most important mechanical effects of shock
waves are reflection with pressure and tension forces at borders
of different impedances and the generation of cavitation
bubbles in liquids. These vacuum bubbles typically collapse
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asymmetrically and induce local shear forces by high velocity
liquid streams (so-called ‘‘jet streams’’).15–17

Several authors have investigated the biologic effects of
ESWT on the molecular level.18–30 Two major mechanisms
seem to be involved in the translation of mechanical shock
wave energy into its biological effects. These include mem-
brane hyperpolarization and the formation of free radicals.
Wang et al and Chen et al demonstrated shock waves to induce
hyperpolarization of cell membranes, followed by Ras activa-
tion and a local increase of stimulating factors like trans-
forming growth factor b1, vascular endothelial growth factor
(VEGF) A (VEGF-A), and mitogen-activated protein
kinases.19,25–27,30 Furthermore, shock waves have been shown
to produce oxygen radicals, which are supposed to play a key
role in translating the mechanical energies of the shock waves
into biological effects.30 Wang et al demonstrated that oxygen
radical production induced a cascade of kinases and growth
factors, such as VEGF, transforming growth factor b1, BMP-1,
BMP-2, and BMP-7, which was followed by an increased
growth and differentiation of mesenchymal cells toward
osteoprogenitor cells.25–30

The effect of ESWTon fracture healing in vivo has been
investigated in numerous studies using different animal
models. Although some investigators did not observe any
positive effects of ESWT on bone healing in their in vivo
models,31–33 numerous authors reported a stimulating effect
of ESWT on bone formation in vivo using different animal
models.22,24,34–37 In vivo studies in rabbits demonstrated that
exposure of normal bone to ESWT may result in increased
new bone formation.34 Further investigations using fracture
models in rats, rabbits, and dogs showed increased callus
formation, decreased healing time, and increased mechanical
strength of broken bones with exposure to ESWT.22,24,35 In the
most recent study using a fracture model in rabbits, Wang
et al37 observed a significantly better bone strength, more
cortical bone formation, a higher number of neovessels, and
increased angiogenic and osteogenic growth markers includ-
ing VEGF, endothelial nitric oxide synthase, proliferating cell
nuclear antigen, and BMP-2 in animals undergoing ESWT
treatment as compared with the control group. Johannes et al36

investigated the effect of ESWT using a nonunion model in
a dog. These authors reported that ESWTexposure resulted in
increased healing rates in established nonunions as compared
with a control group.36

The dose-dependent effect of the ESWT has been the
subject of several investigations.Dose-dependent stimulation of
bone cells in vitro was observed by Kusnierczak et al38 after
shock wave application, with a minimum threshold energy
necessary to effect bone cell growth. Bone cell stimulation
seemed to depend on the total amount of energy applied, rather
than on single physical parameters like energy flux density or
number of administered impulses. Furthermore, these authors
reported decreased cell survival with excessive energy flux
densities. These findings from in vitro studies were confirmed
in subsequent in vivo studies demonstrating a dose-dependent
effect of ESWT on bone mass and bone strength in acute
fracture models in rabbits and in bone defect models in
rats.18,21,24 In addition, Maier et al39,40 provided further in vivo
data on the deleterious effects of very high energy flux

densities, which were associated with soft tissue edema,
cortical fractures, periosteal detachment, intraosseous bleed-
ing, and even displacement of bone fragments to pulmonary
vessels.

CURRENT EVIDENCE

Data Sources and Study Selection
A systematic review of the current literature was

performed to identify clinical outcome studies of ESWT in
the treatment of fractures and delayed unions/nonunions.
The review included original studies with a minimum of
10 patients undergoing ESWT for treatment of fracture or
fracture nonunion published in English or German. Data from
book chapters and review articles were not included. Studies
on pediatric patients or congenital pseudarthrosis were not
considered. Studies on nonunions after corrective osteotomy
or arthrodesis were excluded. In mixed series that included
nonunions after fracture treatment together with nonunions
after corrective osteotomy or arthrodesis, we extracted the data
of fracture nonunions. If extraction of data was not possible
and more than 25% of the nonunions were not related to
fractures, the article was excluded from this systematic review.
Redundant publications, such as meeting abstracts with
subsequent full-text article publication or repeat analysis of
previously published data, were excluded. Likewise, we
considered articles redundant if the subjects from 2 different
articles were recruited at the same institution over the same
period. If there were questions regarding possible redundan-
cies or the indication for treatment, we contacted the
corresponding authors by e-mail to clarify these issues. The
following databases were searched: PubMed-MEDLINE
(1966 to December 2008), Cochrane Database, online archives
of the 2007 and 2008 meeting abstracts of the American
Academy of Orthopaedic Surgeons, online archives of the
2007 and 2008 meeting abstracts of the Orthopaedic Trauma
Association (OTA), online archives of the 2007 and 2008
meeting abstracts of the ISMST, and the bibliographies of
identified articles.

Identified Studies
A total of 11 relevant studies that met our inclusion

criteria were identified (9 full-text publications and 2 meeting
abstracts) and were included into our systematic review of the
literature.14,41–50 The database searches yielded the following
articles:

1. PubMed-MEDLINE: the search terms ‘‘(shock wave* OR
shockwave* OR lithotrips*) AND (fracture* OR nonunion*
OR pseudarthros*)’’ resulted in 169 hits. A total of 10
articles were found to be relevant and matched the inclusion
criteria.14,41,42,45,46,48–52 Two of these 10 studies51,52 were
excluded because the published data were redundant and
were subsequently republished in a later article.45

2. Cochrane Database: the search terms ‘‘(shock wave* OR
shockwave* OR lithotrips*) AND (fracture* OR non-
union* OR pseudarthros*)’’ were used to search the
Cochrane Database of Systematic Reviews (6 hits, none
relevant), the Cochrane Database of Abstracts of Reviews
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of Effects (1 hit, not relevant), and the Cochrane
Central Register of Controlled Trials (4 hits, 1 relevant
but redundant as the same article had been identified in the
PubMed search49).

3. Online archives of the meeting abstracts of the American
Academy of Orthopaedic Surgeons: the 2007 and 2008
meeting abstracts were manually reviewed. One relevant
study was identified53 but was redundant with subsequent
full-text publication.49

4. Online archives of the meeting abstracts of the OTA: the
2007 and 2008 meeting abstracts were manually reviewed.
No relevant studies were identified.

5. Online archives of the meeting abstracts of the ISMST: the
2007 and 2008 meeting abstracts were manually reviewed.
Three relevant studies were identified,44,47,54 and 1 was
excluded54 because the data redundant and re-presented at
the same meeting.

6. Review of bibliographies of the identified articles yielded
one relevant study that matched the inclusion criteria.43

Of 11 articles enrolled into this systematic review, 10
articles14,41–48,50 reported on shock wave therapy in fracture
nonunion/delayed union, whereas 1 article49 dealt with shock
wave therapy in the treatment of acute fractures.

Data Extraction
The following parameters were abstracted from the

identified articles: sample size, level of evidence, definition of
delayed union, definition of nonunion, time from injury to
shock wave treatment, location of fracture, union rate, and
complications. The union rate was the primary outcome
measure of this systematic review. The level of evidence was
graded into the evidence-based medicine levels 1–5, according
to Journal of Bone and Joint Surgery levels of evidence
(http://www2.ejbjs.org/misc/instrux.dtl#levels; accessed
December 22, 2008).

Data Analysis
The data on delayed unions/nonunions were analyzed

descriptively. Comparisons between shock wave therapy
versus control group or versus other treatments were not
possible because there were no higher level studies. The
overall union rates were calculated. The union rates between
atrophic nonunions and hypertrophic nonunions were com-
pared using the Fisher exact test.

Results
The available evidence of the 11 identified studies was

graded as follows:

1. Ten case series (level 4) reporting on the outcomes of
shock wave therapy in the treatment of delayed unions/
nonunions.14,41–48,50

2. One prospective randomized clinical trial (level 2) com-
paring operative treatment of acute femur and tibia fractures
versus operative treatment plus shock wave therapy.49

From the 10 articless reporting on shock wave therapy in
the treatment of delayed union/nonunion, a total of 924
patients were extracted 14,41–48,50 (Table 1). These included 148
delayed unions and 694 nonunions, and in 82 patients, the
authors did not distinguish between the 2. The most
common definition of delayed union was no healing at 3–6
months (n = 143). In 5 cases, the definition of delayed union
was not provided by the authors. The definition of nonunion
was as follows: no healing at a minimum of 6 months after
injury (n = 509), no healing at a minimum of 9 months (n =
17), not extractable (n = 168). The anatomic fracture location
was mixed in all series. The mean time from injury to shock
wave treatment was 13 months (range 3–300 months). The
exact fracture location was extractable for a total of 364
fractures and was distributed as follows: humerus, 36; radius,
32; ulna, 23; metacarpal, 8; scaphoid, 45; other upper

TABLE 1. Overall Outcomes in Delayed Unions/Nonunions

Study n
Minimum Time From

Injury to ESWT
No. Treatment

Sessions Union Rate
Union Rate Atrophic Versus

Hypertrophic

Valchanou et al14 82 — (mean: 20 mo) 1 70/82 —

Beutler et al41 27 6 mo 2 11/27 Atrophic: 3/12

Hypertrophic: 8/15

Biedermann et al42 23 6 mo 1–2 13/23 —

Diesch et al43 142 — 1–3 102/142 Hypertrophic: 102/142
(only hypertrophic NU included)

Guiloff et al44 31 — (26 NU/5 DU) 1–3 21/31 —

Rompe et al45 17 9 mo 1 10/17 —

Schaden et al46 115 3 mo (n = 35) 1 87/115 —

6 mo (n = 80)

Valentin et al47 349 3 mo (n = 108) 1–2 282/349 —

6 mo (n = 241)

Wang et al48 72 6 mo 1 44/55
(17 lost to FUP)

Atrophic: 6/8

Hypertrophic: 25/31

Fracture gap: 13/16

Xu et al50 66 6 mo 1 50/66 Atrophic: 0/11

Hypertrophic: 50/55

DU, delayed union; ESWT, Exracorporal shock wave therapy; FUP, follow-up; n, number of fractures; NU, nonunion.
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extremity fractures, 11; pelvis, 3; femur, 91; patella, 1; tibia,
94; fibula, 1; midfoot, 3; talus, 2; metatarsals, 2; and other
lower extremities 12. The number of impulses was highly
variable. All articles identified in this systematic review
documented between 1 and 3 treatment sessions.

The overall union rate in patients with delayed union/
nonunion was 76% (95% confidence interval 73%–79%) and
ranged from 41% to 85%. For 274 injuries, the authors
distinguished between atrophic nonunions (n = 31) and
hypertrophic nonunions (n = 243). The union rate in atrophic
nonunions was 29% (9 of 31) as compared with 76% (185 of
243) in hypertrophic nonunions (relative risk = 2.6; 95%
confidence interval 1.6–4.7; P , 0.0001). The only recorded
complications included local swelling, petechiae, and hema-
toma. Only 1 article provided the incidence of these
complications (petechiae 81% and hematoma 38%).48

Only 1 article reported on the clinical outcomes of shock
wave therapy in the treatment of acute long-bone fractures.49

These authors reported a level 2 study including 56 patients
with 59 fractures of the femur and/or tibia. Patients were
allocated to operative fixation plus intraoperative shock wave
therapy versus operative fixation without shock wave therapy.
The minimum follow-up was 12 months. The authors
observed a higher nonunion rate in the control group than
in the shock wave therapy group (11% vs. 20%) and suggested
shock wave therapy as effective in decreasing nonunion rates
in acute long-bone fractures.

Grades of Recommendation
The overall quality of the literature on shock wave

therapy in fracture healing was graded according to the
Journal of Bone and Joint Surgery grades of recommenda-
tion.55 In this grading system, the grades of recommendation
are defined as follows: grade A, good evidence (level 1 studies
with consistent findings); grade B, fair evidence (level 2 or 3
studies with consistent findings); and grade C, conflicting
or poor-quality evidence (level 4 or 5 studies) not allowing a
recommendation, grade 1, insufficient evidence to make a
recommendation.

Based on this grading system, a grade C recommenda-
tion can be given for shock wave therapy in the treatment of
delayed union/nonunion because the available evidence is
limited to level 4 studies. No recommendation can be made with
regards to the treatment of acute fractures because only one
peer-reviewed article was identified in our systematic review.

DISCUSSION AND CONCLUSIONS
The treatment of fracture nonunions remains a challeng-

ing problem for trauma surgeons. Treatment approaches that
minimize patient morbidity and treatment costs seem desir-
able. Experimental data suggest that shock wave therapy may
stimulate bone formation in vitro and in vivo.18–30,34–38 How-
ever, the clinical use of shock wave therapy in the treatment of
fractures and delayed unions/nonunions is not widely establi-
shed. Our data from level 4 studies suggest that approximately
three-fourth of delayed unions/nonunions can be treated
successfully using this approach. Moreover, the currently

available evidence suggests that hypertrophic nonunions show
a better response to this approach than atrophic nonunions.

Our study has both strengths and limitations. One
limitation of our study is the lack of higher level evidence.
With the data available, it is not possible to estimate how shock
wave therapy compares with other treatment approaches. The
extracted data of our systematic review include a relatively
high number of delayed unions. The natural history of these
lesions remains unclear, and it may be assumed that some
of these delayed unions may have healed using other
nonoperative treatment approaches. Moreover, we acknowl-
edge that the interpretation of our data is limited by the
nonstandardized definitions of delayed union and nonunion
and the highly variable distribution of the anatomic fracture
locations. In addition, the treatment protocols recorded in the
identified studies were highly variable with regards to the
number of treatment sessions and the physical parameters of
the applied shock wave therapy.

The data obtained in our study support previous reports,
encouraging the use of shock wave therapy. In 2002, Birnbaum
et al56 published a systematic review on shock wave therapy in
the treatment of nonunions and reported success rates ranging
from 75% to 91%. However, these authors did not report their
search strategies, and the majority of their data were obtained
from non–peer reviewed literature, such as book chapters. For
these reasons, the validity of their data remains unclear. We
believe that the thorough search of different databases and the
well-defined inclusion criteria allow us to assume that the data
extracted in our systematic review is a robust representation of
the currently available evidence of shock wave therapy in the
treatment of delayed union/nonunion.

We conclude that the currently available evidence for
shock wave therapy in the treatment of delayed union/
nonunion is based on level 4 data. The available studies suggest
that approximately three-fourth of delayed unions/nonunions
can be treated successfully using this approach. Future
studies need to investigate how shock wave therapy compares
with other treatment approaches and if different anatomic
fracture locations may demonstrate different success rates.
Moreover, the optimal treatment dose needs to be identified
in further investigations. No conclusions can be made with
regards to shock wave therapy in the treatment of acute
fractures because only 1 identified study investigated this topic.
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