Variable Sound-Fields of Electro-Hydraulic Extracorporeal Shockwave Applicators

CYRILL SLEZAK

BEIJING, MAY 24^{TH} , 2019

Disclosures & Acknowledgements

There are no financial conflicts of interest to report

BI Trauma

31 Trauma

- Collaborators:
 - Paul Slezak
 - Julia Böhm

 - David Hercher David Hercher
 - Roland Rose Starma

Equipment was generously provided by:

Therapy Measurements

Electro-Hydraulic Sock-Wave Generation

O. Wess. Physikalische Grundlagen der extrakorporalen Stoßwellentherapie. Journal für Mineralstoffwechsel 11(4):7–18, 2004

Source Variability

Continuous-Spark Discharge

Reflector Geometry

Image-Location & Acoustical Focus Stability

Continuous Source

Time-Difference of Arrival

A Pathway to In-Silico Therapy

Nerve Regeneration & Spinal Cord Trauma

Place hydrophone in spinal cord

In-situ energy measurement

Therapeutic-application evaluation

Defocused Reflector

	15 MPa zone	10 MPa zone	5 MPa zone		
Top view:					
Side view:					

Focused Reflector

Acoustic Windows & Anatomical Entry

- Focusing Reflector (elliptical)
- Continuous Source (spark)
- Entry Angle
 - Between Spinous Processes
 - Through Spinous Processes
 - Lateral to Spinous Processes
 - Laminectomy
- Spark Variability

Between Spinous Processes

Through Spinous Process

Lateral to Spinous Process

Laminectomy

Straight Spark

Between Spinous Processes

15 MPa zone 10 MPa zone 5 MPa zone Top view: Side view:

Between Spinous Processes

Downward Spark

Between Spinous Processes

	15 MPa zone	10 MPa zone	5 MPa zone		
Top view:					
Side view:					

Phantom Reference-Measurements

In-Silico Approach: Viability for Laminectomy

Top view:

Side view:

Computational Expense

2D Simulation

TH

UNIVERSITY

OF UTAH

CHPC – Center for High Performance Computing

maximum input pressure: 100 MPa

grid spacing [m]	grid size	displacement of acoustical from	maximum pressure	computing time GPU ¹	memory GPU
		geometrical focus [mm]			
0.125*1e-3	384 x 324 = 124 416	0 0.1250	158 MPa	23 sec	1.52 GB
0.1*1e-3	480 x 400 = 192 000	0 0.3000	162 MPa	33 sec	1.54 GB
1/11*1e-3	512 x 450 = 230 400	0 0.2727	165 MPa	35 sec	1.54 GB
1/13*1e-3	625 x 512 = 320 000	0 0.2308	170 MPa	51 sec	1.56 GB
0.0625*1e-3	750 x 625 = 468 750	0 0.2500	174 MPa	1 min 4 sec	1.59 GB
0.05*1e-3	945 x 768 = 725 760	0 0.2000	180 MPa	1 min 40 sec	1.60 GB
0.04*1e-3	1176 x 1024 = 1 204 224	0 0.2000	188 MPa	3 min 30 sec	1.65 GB
0.01*1e-3	4608 x 3600 = 16 588 800	0 0.1200	230 MPa	2 h 12 min	3.49 GB

3D Simulation

maximum input pressure: 150 MPa

grid spacing	grid size	compiling	size	size input.h5	displacement of acoustical		maximum	computing	memory
[m]		time input.h5	input.h5	compressed	from geometri	cal focus [mm]	pressure	time lonepeak	lonepeak
0.125*1e-3	384 x 324 x 384 = 47 775 744	20 sec	1.24 GB	2.36 MB	0 -3.7500	0	70 MPa	2 h 40 min	4.86 GB
0.1*1e-3	480 x 400 x 480 = 92 160 000	45 sec	2.40 GB	4.07 MB	0 -3.5000	0	70 MPa	6 h 23 min	9.35 GB
1/11*1e-3	512 x 450 x 512 = 117 964 800	1 min	3.07 GB	5.11 MB	0 -3.5455	0	70 MPa	8 h 36 min	11.96 GB
1/13*1e-3	625 x 512 x 625 = 200 000 000	2 min	5.21 GB	8 MB	0 -3.6923	0	72 MPa	25 h 26 min	20.25 GB
0.0625*1e-3	750 x 625 x 750 = 351 562 500	8 min	9.16 GB	13.5 MB	0 -3.5625	0	72 MPa	48 h 19 min	35.59 GB

_BI Trauma

Computational modeling of treatment sessions

- Non-Deterministic Outcomes
- Probabilistic Modeling
- Random walk and treatment patterns comparison

Computational modeling of treatment sessions

Electro-Hydraulic

Electro-Magnetic

300 Shots4cm penetration depth

Summary

- Spark-variations modulate sound field
- In-Silico treatment estimations correlate with reference measurements
- Simulations are currently the only way to explore treatment options and devise therapy plans

