

DG100 – Treatment protocol Revision 2013

00.00.00

Analysis of treatment protocols: application of ESWT for wound healing disorders

Shock waves are high-energy acoustic waves characterized by an initial rise of high pressure within a very short rise time, followed by a low tensile amplitude.

Extracorporeal shock wave therapy has been documented to have various effects on bones and soft tissue. ESWT acts through mechanotransduction and leads to biological responses at cellular level including the release of angiogenic growth factors known to play an important role in wound healing, associated with neovascularization, improved blood supply, cell proliferation and a significant bacterial effect.

Recent researches show that shock waves have highly beneficial effects on skin lesions since they stimulate the healing processes and in acute conditions appears to initiate a more rapid and effective healing phase.

Shockwave energy, frequency, number of pulses and number of re-treatments are important characteristics of treatment description in order to compare different ESWT studies and standardize shock wave treatment for various indications.

For shock waves application on wounds the number of pulses depends on the wound size.

Furthermore, the number of treatments is very case specific and depends on the type of wound healing disorders: some wounds react very well with fewer treatments while others require more treatments.

The following table shows an overview of recently published literature and MTS studies for wound indications, showing positive results and proving the effectiveness of ESWT in wound healing:

DG100 – Treatment protocol Revision 2013

HUMAN STUDIES							
MTS Spark Wave Therapy - Scientific Research: Wounds							
RESEARCH INSTITUTION	INDICATION	PUBLICATION	AUTHOR	JOURNAL	IMPULSES AND ENERGY FLUX DENSITY	RESULTS	
Centre for Severe Burns with Plastic Surgery, Unfallkranken haus Berlin, Berlin, Germany	Second degree burn wounds Clinical application	Prospective randomized phase II trial of accelerated reepithelialization of superficial second- degree burn wounds using extracorporeal shock wave therapy.	Ottomann C, Stojadinovi c A, Lavin P, et al.	Ann Surg. 2012; 255(1):23-9.	100 impulses per cm ² 0.1 mJ/mm ²	Pos. 100%	
Institute for Neuropalliative Rehabilitation, Royal Hospital for Neuro- disability, London, UK	Chronic decubitus ulceration Clinical application	Randomized control of extracorporeal shock wave therapy versus placebo for chronic decubitus ulceration.	Larking AM, Duport S, Clinton M, et al.	<i>Clin Rehabil.</i> 2010; 24(3):222-9.	200 + 100 impulses per cm ² 5 pulses per sec 0.1 mJ/mm ²	Pos. - Completely healed: 74% - 10% had 50% of epithelializ ation	
Centre for Severe Burns with Plastic Surgery, Unfallkranken haus Berlin, Berlin, Germany	Re- epithelization of skin graft donor sites Clinical application	Prospective randomized trial of accelerated re- epithelization of skin graft donor sites using extracorporeal shock wave therapy.	Ottomann C, Hartmann B, Tyler j, et al.	J Am Coll Surg 2010; 211(3):361- 7.	100 impulses per cm ² 0.1 mJ/mm ²	Pos.	
Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan	Diabetic foot ulcers Clinical application	Extracorporeal shockwave treatment for chronic diabetic foot ulcers.	Wang C, Kuo Y, Wu R, et al.	J Surg Res. 2009; 152:96-103.	300 + 100 impulses per cm ² 0.11 mJ/mm ²	Pos. - Completely healed: 31% - Improved: 58%	
Centre for Severe Burns with Plastic Surgery, Unfallkranken haus Berlin, Berlin,	Termal lesion Clinical application	Accelerated reepitheliasation of a IIb° scald through extracorporeal shock wave therapy	Ottoman C, Thiele R, Hartmann B	GMS Verbrennung medizin,200 9, 3: Doc01	100 impulses per cm ² 0.1-0.14 mJ/mm ²	Pos.	

MTS_Treatment_Protocol_E_B

DG100 – Treatment protocol Revision 2013

Ausgabedatum (Date of Release) (TT.MM.JJ) **00.00.00**

Page **3 / 8**

Germany						
Department of Cardiothoracic Surgery, Medical University of Vienna, Austria	Wound healing after vein harvesting Clinical application	Prophylactic low- energy shock wave therapy improves wound healing after vein harvesting for coronary artery bypass graft surgery: A prospective, randomized trial.	Dumfarth J, Zimpfer D, Vögele- Kadletz, et al.	<i>Ann Thorac Surg.</i> 2008; 86:1909-13.	25 per cm 0.1 mJ/mm ²	Pos.
AUVA-Trauma Center Meidling, Vienna, Austria	Chronic wounds Clinical application	Shock wave therapy for acute and chronic soft tissue wounds: A feasibilty study.	Schaden W, Thiele R, Kolpl C, et al.	J Surg Res. 2007; 143:1- 12.	100 per cm ² 0.1 mJ/mm ²	Pos. 75%

ANIMAL STUDIES							
MTS Spark Wave Therapy - Scientific Research: Wounds							
RESEARCH INSTITUTION	INDICATION	PUBLICATION	AUTHOR	JOURNAL	IMPULSES AND ENERGY FLUX DENSITY	RESULTS	
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria	Tissue revascularisa tion Animal model	Extracorporeal shockwave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis.	Mittermaye r R, Hartinger J, Antonic V, et al.	Ann Surg. 2011; 253(5):1024- 32.	300 impulses per cm ² 5 pulses per sec 0.1 mJ/mm ²	Pos.	
Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine,	Enhanced wound healing in rat model of STZ-induced diabetes Animal model	Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of	Kuo, YR, Wang CT, Wang FS et al.	Wound Rep Reg. 2009; 17:522-530.	800 impulses per cm ² 0.9 mJ/mm ²	Pos.	

MTS_MEM_DG100_Treatmentprotocol_E_B

MTS_Treatment_Protocol_E_B

DG100 – Treatment protocol Revision 2013

Ausgabedatum (Date of Release) (TT.MM.JJ) **00.00.00**

Page **4 / 8**

	ST7-induced				
	diabetes.				
Burn injury Animal model	Extracorporeal shock wave therapy surpresses the early proinflammatory immune response to a severe cutaneous burn injury.	Davis T, Stojadinovi c A, Anam K, et al.	<i>Int Wound J.</i> 2009; 6:11- 21.	200 impulses per cm ² 5 pulses per sec 0-1 mJ/mm ²	Pos. - Significant reduction of neutrophils : 60-68% - Significant reduction of macrophag es: 55-66%
Angiogenic response in skin isografts Animal model	Angiogenic response to extracorporeal shock wave treatment in murine skin isografts.	Stojadinovi c A, Elster E, Anam EA, et al.	Angiogenesi s. 2008; 11(4):369- 380.	200 impulses per cm ² 3 pulses per sec 0.1 mJ/mm ²	Pos.
Skin flap model Animal model	A study of the biological factors and wound healing of a skin flap model treated with unfocused extracorporeal shockwave therapy	Edelmann S, Fink BF, et al.	University of Kentucky Chandler Medical Center	500 impulses per cm ² 0.15 mJ/mm ²	Pos.
Skin flap model Animal model	How many shockwaves are enough? Dose- response relationship in ischemic challenged tissue	Mittermayr R, Hartinger J, Hofmann M, et al.	Annual Congress ISMST 2008, Abstract No. 64	 30 impulses per animal 300 impulses per animal 1000 impulses per animal 	Best treatment: 300 impulses per animal
	Animal model Angiogenic response in skin isografts Animal model Skin flap model Animal model Skin flap model Skin flap	Burn injury Animal modelExtracorporeal shock wave therapy surpresses the early proinflammatory immune response to a severe cutaneous burn injury.Angiogenic response in skin isografts Animal modelAngiogenic response to extracorporeal shock wave treatment in murine skin isografts.Skin flap model Animal modelA study of the biological factors and wound healing of a skin flap model treated with unfocused extracorporeal shock wave therapySkin flap model Animal modelHow many shockwaves are enough? Dose- response response relationship in ischemic challenged	diabetes.Burn injury Animal modelExtracorporeal shock wave therapy surpresses the early primmune response to a severe cutaneous burn injury.Davis T, Stojadinovi c A, Anam K, et al.Angiogenic response in skin isografts Animal modelAngiogenic response to extracorporeal shock wave treatment in murine skin isografts.Stojadinovi c A, Anam K, et al.Skin flap model Animal modelA study of the biological factors and wound healing of a skin flap model treated with unfocused extracorporeal shockwave therapyStojadinovi c A, Elster E, Anam EA, et al.Skin flap model Animal modelA study of the biological factors and wound healing of a skin flap model treated with unfocused extracorporeal shockwave therapyEdelmann S, Fink BF, et al.Skin flap model Animal modelHow many shockwaves are enough? Dose- response	diabetes.Image: Section of the section of	diabetes.diabetes.Burn injury Animal modelExtracorporeal shock wave therapy surpresses the early proinflammatory a severe cutaneous burn injury.Davis T, Stojadinovi c A, Anam K, et al.Int Wound J. 2009; 6:11- 21.200 impulses per sec 0-1 mJ/mm²Angiogenic response in skin isograftsAngiogenic extracorporeal shock wave treatment in murine skin isografts.Stojadinovi c A, Elster E, Anam EA, et al.Angiogenesi s. 2008; 11(4):369- 380.200 impulses per cm² 3 pulses per sec 0.1 mJ/mm²Skin flap model Animal modelAstudy of the biological factors and wound healing of a skin flap model animal modelStojadinovi c A, Elster E, Anam EA, et al.Angiogenesi s. 2008; 11(4):369- 380.200 impulses per cm² 3 pulses per sec 0.1 mJ/mm²Skin flap model Animal modelA study of the biological factors and wound healing of a skin flap model extracorporeal shockwave therapyEdelmann S, Fink BF, et al.University of Kentucky Chandler dender500 impulses per cm² 0.15 mJ/mm²Skin flap model Animal modelHow many shockwave therapyMittermary R, Hartinger J, Hartinger Mittermary M, et al.Annual Congress (Annual Congress (Abstract No. 6430 impulses per animal 1000 impulses per

MTS_MEM_DG100_Treatmentprotocol_E_B

MTS_Treatment_Protocol_E_B

Comparison treatment protocols Wang et al.

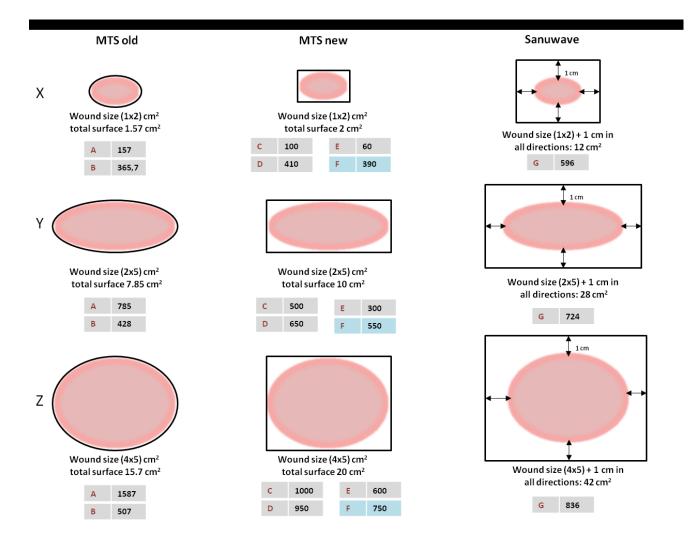
(energy-impulses-intervals)

	Wang et al. (2009) "Extracorporeal shock wave treatment for chronic diabetic foot ulcers"	Wang et al. (2011) "Treatment of diabetic foot ulcers: a comparative study of extracorporeal shockwave therapy and hyperbaric oxygen therapy"		
	MTS Orthowave180 New: Orthogold100	Sanuwave DermaPACE		
Indication	Chronic diabetic foot ulcers	Chronic diabetic foot ulcers		
Impulses	300 + (cm ² x 10) Total surface	500 + (cm ² x 8) 1 cm plus in all directions		
Energy Flux Density	Unfocused 0.11 mJ/mm ²	Focused 0.23 mJ/mm ²		
Intervals	Once every 2 weeks (total 3 treatments in 6 weeks)	2 times per week for 3 weeks (total of 6 treatments)		

MTS_Treatment_Protocol_E_B

DG100 – Treatment protocol Revision 2013

PROTOCOL CALCULATION ANALYSIS


		MTS Dermagold100	Sanuwave DermaPACE	X wound size: (1x2) cm ²	Y wound size: (2x5) cm ²	Z wound size: (4x5) cm ²
	MTS A) IFU	100 shocks/cm ²		157	785	1587
O L D	MTS B) User guide	350 + (cm ² x 10)		365,7	428	507
	MTS C) Proposal I	50 shocks/cm ² Total surface		100	500	1000
N	MTS D) Proposal II	350 + (cm ² x 30) Total surface		410	650	950
EW	E) MTS Proposal II	30 shocks/cm ² I Total surface		60	300	600
	F) MTS Proposal I	350 + (cm ² x 20) V Total surface		390	550	750
	Sanuwave G) Measurem	ent	500 + (cm ² x 8) 1 cm plus in all directions	596	724	836

MTS_Treatment_Protocol_E_B

DG100 – Treatment protocol Revision 2013

Examples of calculation impulses

DG100 – Treatment protocol **Revision 2013**

00.00.00

Conclusions:

The different way to calculate the surface of the wound and the number of required impulses can lead to different results!

As reported in the analysed literature studies (both human and animal studies), most of them showed a number of impulses equal to 100 impulses per cm^2 .

There is only one scientific evidence for a doses-outcome-relation from Mittermayr et al., who investigated skin flap outcome in respond to various total amounts of impulses, in an animal flap model.

In the ischemic area of a rodent epigastric flap, different amounts of total shock wave impulses were applied (30, 300, and 1000) to reduce tissue necrosis. They found out that the best dose is 300 impulses. Thus, they showed that more impulses are not necessary and that a higher amount does not improve the final outcome.

The proposed protocol reflects also the latest Wang et al. study (2011) in which it is shown that the protocol with 8 impulses per cm2 is similar to the one used for Dermapace, but the energy flux density is different: in Wang study they used the double amount of energy.

Based on this scientific paper, a certain minimum dose is required and the maximum doses should be limited. Therefore it is justified to limit the impulses with 20 impulses per cm², plus a minimum quantity equal to 350 shocks (Proposal IV). This means to have more shocks on small wounds, and less shocks in large wounds compared to a linear formula, used in previous protocols.

Konstanz, 20.06.2013 Nicoletta Fotino / Ralph Reitmajer