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Mononuclear invasion of Langerhans islet and the ensuing insulitis triggers signal-transduction for the
autoimmune mediated pancreatic beta-cell (b-cell) apoptosis that severely disrupts insulin production
resulting in hyperglycemia associated with Type-1 diabetes (T1DM). Today extensive global research is
being conducted to eliminate the need for insulin, and even prevent or find a cure for T1DM. The multi-
factorial combination of autoimmune dysfunction, Langerhans islet hypoxia, and bio-chemical disruption
are seen to be contributory factors for b-cell destruction and the consequential disruption to insulin pro-
duction. Regeneration of b-cells back to physiological levels may restore homeostatic insulin levels,
reversing T1DM. Evidence suggests that there are still functioning pancreatic b-cells even in long stand-
ing T1DM providing the potential for their regeneration. Although the exact mechanism of extracorporeal
shockwaves (ESW) is yet to be fully elucidated, it is seen to influence a complex spectrum of bio-chem-
ical, cellular and neuronal functions (i.e. suppression of pro-inflammatory immune response, improved
tissue hemodynamics, anti-microbial properties, and the induction of progenitor cell expression includ-
ing proangiogenic factors and nitric oxide syntheses). The rationale for the use of ESW as a therapeutic
modality in this instance is attributed to its restorative properties and safety profile demonstrated in
urology, cardiology, chronic wounds, osteogenesis, complex pain syndromes, and tendinopathies. ESW
may restore autoimmune homeostasis creating a suitable environment for pancreatic b-cell proliferation
which in-turn may significantly increase or normalize endogenous insulin secretion reducing or totally
eliminating dependency of exogenous insulin. The devastating complications, morbidity and mortality
associated with T1DM warrants the exploration of homeostatic autoimmune restorative treatment
(HART) modalities that may partially or fully reverse this disease condition. We present our hypothesis
discussing ESW as a potential homeostatic autoimmune restorative treatment (HART) option for T1DM.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

A United Nations General Assembly resolution in 2006 recog-
nized for the first time a non-communicable disease, namely dia-
betes mellitus (Type 1 and Type 2) as a global pandemic.
Diabetes mellitus Type 1 (TIDM) is an autoimmune disorder that
disrupts insulin production via the destruction of pancreatic b-cells
(b-cells). The pancreas is a mixed gland containing both endocrine
and exocrine components and functions. The endocrine component
contains the islets of Langerhans that include: a-cells, b-cells,
d-cells and PP-cells that produce glucagon, insulin, somatostatin,
and pancreatic polypeptide respectively. Insulin transmits signals
to cells and tissue in the body to metabolize glucose to be utilized
as fuel for energy. The absence or insufficient levels of insulin lead
to the failure of glycemic homeostasis resulting in hyperglycemia.
To date the exact etiology of TIDM is yet to be fully elucidated and
there is presently no known method of preventing this
autoimmune induced metabolic syndrome from occurring, neither
is there a method for arresting or reversing this condition.

The multifactorial combination of autoimmune dysfunction,
tissue hypoxia, and bio-chemical disruptions are all seen to be
contributory factors for b-cell destruction and the consequential
disruption to insulin secretion [1–4]. Although considered an
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autoimmune syndrome the development of T1DM does not neces-
sarily require an exogenous or infectious trigger [5], suggesting a
complex interplay of a constellation of genetic predisposition,
aberrant cellular transcription and putative environmental events
that gives rise to this metabolic syndrome [3,5–11].

Once triggered, the mononuclear invasion of Langerhans
islet and the ensuing inflammation triggers signal-transduction
for the autoimmune mediated (i.e. CD4+ & CD8+ Tcells) b-cell
apoptosis that severely disrupts insulin production resulting in
hyperglycemia [1,3,10,12–16], and the need for exogenous insu-
lin dependence for survival. The consequence of sustained auto-
immunity, inflammation and prolonged disruption to blood
glucose homeostasis further triggers a complement chain of
bio-cellular and molecular aberrances (i.e. poor hemodynamics,
endothelial and neuronal dysfunction), that ultimately triggers
the squela of neurological, cardiovascular, urological, and soft-
tissue complications, that often results in the premature death
of the sufferer [1,3,17–21]. To date the use of exogenous insulin
therapy is the mainstay for insulin regulation in T1DM patients,
and remains a lifelong life-sustaining therapy [18]. However
exogenous insulin therapy is unable to compare with the preci-
sion of the innate endogenous insulin secretion regulated by
b-cells [16] hence the subsequent long term sequelae of compli-
cations despite adequate glycemic control. This elucidates the
fact that symptomatic management alone is ineffective for
maintaining and protecting the patients’ quality of life over the
long term.

The incidence of T1DM continues to rise steadily with its inci-
dence alarmingly expected to double, especially in children
under the age of five by the year 2020 [22,23]. Given the present
economic climate and outlook this statistic clearly indicates that
interventions requiring life-long management are at risk of
becoming unsustainable and hinder patients from being able to
afford and access life-sustaining medications (i.e. insulin). There-
fore, an urgent need for investigating potential homeostatic
autoimmune restorative treatments (HART) becomes necessary
in order to restore normative function and ensure economic
viability.

Presently disease arresting or eliminating interventions are
scarce and often require a high skill level, high cost and pro-
longed or sustained immune suppression. Some of these inter-
ventions are:
Organ transplantation and donor cell therapy

Pancreas transplant is one such method for disease elimina-
tion however; the scarcity of suitable donor organs, the continu-
ous need for lifelong immune suppression, high skill level
requirement, and the high cost associated with this procedure
are factors that hinder its empirical availability [24,25]. The
Edmonton protocol utilizing a combination of pharmacogenics
and multiple donor pancreatic islets has proven to be successful.
However, once again limited availability of suitable pancreatic
islet donors, poor islet preservation capability, premature cellular
necrosis and apoptosis, along with procedure and immunosup-
pressive risk are major drawbacks that limit the empirical use
of this technique [18,26,27].
Stem cell therapy

Exogenous stem cell therapy has been attempted to replace
b-cells however the inability to adequately control the underly-
ing autoimmune response, associated the high cost again com-
promises the long term viability and efficacy of this procedure
[21].
Pancreatic b-cell regeneration

Despite the sustained autoimmunity occurring in T1DM, there is
still a continued presence of b-cells in the pancreas and the pancre-
atic duct even in long standing diabetes, which implies that there
may still be a small amount of b-cell formation occurring via cell dif-
ferentiation, or progenitor stem cell expression [3,28–30]. This pro-
vides a premise where targeted b-cell regeneration may be plausible.
However, given the pathophysiology of T1DM where the dysfunc-
tional autoimmune activity creates a self perpetuating environment
for sustained ß-cell onslaught and destruction, any intervention that
does not primarily address the autoimmune dysfunction may be a
futile attempt in restoring insulin homeostasis.

The hypothesis

We hypothesize that extracorporeal shockwaves (ESW) is
potentially a viable homeostatic autoimmune restorative treat-
ment (HART) modality for T1DM that may regulate autoimmune
aberrances allowing for a conducive environment for b-cell prolif-
eration and survival, normalizing insulin secretion.

Extracorporeal shockwaves (ESW)

Shockwaves for biomedical use was first introduced for the erad-
ication of urolithiasis, the world’s first minimally invasive surgery,
and the introduction of extracorporeal shock waves (ESW) into med-
icine [31]. Since the 90s ESW have been applied in orthopaedics,
trauma and musculoskeletal medicine with successful results, and
its application has since expanded into: sports medicine, pain man-
agement (CRPS1), arthropathy, chronic wounds, ulcer management,
limb dystonia, neurologic disorders, cosmetic medicine, erectile dys-
function and cardiology [32–54]. In a recent exploratory investiga-
tion ESW was successfully in restoring peripheral insensitivity due
to distal symmetrical peripheral polyneuropathy in a Type 1 diabetic
foot, suggesting neuro modulatory benefits [35].

Shockwave propagation and mechanism of action

ESW may be propagated electro-hydraulically, electro-magnet-
ically and piezo-electrically. Unlike ultrasound waves that are
sinusoidal waves with a fairly long duration lifespan. ESW is a
supersonic wave with a rapid rise time and a very short duration
lifespan with peak pressure amplitudes reaching one hundred
megapascals (MPa) within nanoseconds, and with its energy flux
density levels (EFDL) measured in mj/mm2.

Although the exact mechanism of action on tissue is yet to be
fully elucidated, research indicate that ESW induces a constellation
of bio-cellular and bio-chemical responses where structural
and functional tissue plasticity are seen to occur in skeletal
muscle, neuronal and connective tissue, epithelia and the endothe-
lium [32–55]. ESW’s are seen to trigger a localized cellular and
bio-molecular response that improves regional and tissue hemody-
namics, regulation endothelial nitric oxide synthese (eNOS), pro-
mote progenitor cell expression, increase collagen syntheses,
mediate and regulate; pro-inflammatory substances, neurotrans-
mitters, cytokine activity, transcription factor nuclear factor-kappa
B (NF-jB) activation, and NF-jB dependent gene expression such
as tumor necrosis factor alpha (TNF-a) and inducible NOS [32–56].

Evaluation and rationale of the hypothesis

Given the nature and the pathophysiology of T1DM as currently
elucidated, the presence of sustained autoimmunity and inflamma-
tion, tissue hypoxia, and further biochemical disruptions result in
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b-cell destruction causing exogenous insulin dependence. Some of
the key factors involved in this syndrome are seen to be:

� Sustained autoimmune action maintained by factors such as:
NF-jB, TNF-a, cytokines and other pro-inflammatory sub-
stances [3,5–11].
� Tissue hypoxia [2,4,26].
� Disruption to eNOS expression and function [17,57–59].
� Destruction of Langerhans islet b-cells [6–11,35]. However exis-

tence of b-cells are still evidenced in the pancreas [3,28–30]
providing the premise for potentially stimulating proliferation.

Extracorporeal shockwave (ESW) treatment

As earlier elucidated the action of ESW on human tissue are
many, and some of the bio-cellular responses induced by ESW
may potentially return insulin homeostasis in T1DM patients.
ESW is seen to modulate autoimmune (i.e. NF-jB, TNFa, iNOS
etc.), inflammatory and cytokine activity (COX2, IL-1B, IL-6 etc.),
improve regional microcirculation, modulate eNOS activity, and
enhance cell proliferation [32,34,36,37,39–43,46–56]. These mech-
anisms of action of ESW suggests that it may restore homeostasis
of the autoimmune function, tissue hemodynamics, and regional
nutrient bio-availability allowing for islet b-cell proliferation and
ultimately homeostatic endogenous insulin secretion preventing
the sequelae of complications of T1DM.

Testing the hypothesis

We propose the following investigations to be carried-out in
two stages to test the hypothesis: in-vitro studies using islet b-cell
lines to be tested. This will involve a control and treatment compo-
nent where b-cells lines will be divided into treatment and control
specimen groups. Treatment specimen group will be further
divided into: (a) single treatment session group; and (b) three
treatment session. All specimens groups will be incubated and
monitored over several weeks. The objective of further diving
treatment groups into a single treatment and multiple (�3) treat-
ment groups is to determine if more than one session of ESW treat-
ment would provide greater b-cell proliferation versus a single
treatment. In-vitro cell culture studies will utilize proliferation
assay and b-cell proliferation and apoptosis measurements. Our
hypothesis suggests that the ESW treatment culture groups should
reflect greater b-cell proliferation and survival compared to con-
trol, after which we would propose animal trails to commence.
Our hypotheses does not include at this present moment utiliza-
tion of ESW in combination with anti CD-3 and immune-regulatory
agents, however this may be considered at a later stage.

Conclusion

The devastating complexity and the estimated rise in the inci-
dence of T1DM warrants the exploration of modalities that are
effective and sustainable to ensure quality of life and socio-
economic wellbeing of our society. ESW may potentially be a HART
modality that could improve quality of life and reduce the socio-
economic burden associated with the global epidemic of T1DM.
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