PATIENTS    |   BECOME A PROVIDER    |   PROVIDER PORTAL    |   PROVIDER SEARCH    |   REIMBURSEMENT
PATIENTS    |   BECOME A PROVIDER    |   PROVIDER PORTAL    |   PROVIDER SEARCH    |   REIMBURSEMENT

Day

June 25, 2021
Shock waves have been shown to induce recruitment of intravenously injected endothelial progenitor cells to ischemic hind limbs in rats. We hypothesized that shock wave treatment as sole therapy would induce angiogenesis in this ischemia model and would lead to mobilization of endogenous endothelial (progenitor) cells. Click here to read more.
Read More
Ischemic heart disease represents a collective term for a continuous disease pathophysiology, ranging from acute myocardial infarction to congestive and chronic heart failure. According to the World Health Organization (WHO) and its Global Burden of Disease study 2010 ischemic heart disease represents the most common cause of death and disability-adjusted life years (DALY) worldwide. Click...
Read More
Shock wave therapy (SWT) represents a clinically widely used angiogenic and thus regenerative approach for the treatment of ischaemic heart or limb disease. Despite promising results in preclinical and clinical trials, the exact mechanism of action remains unknown. Toll-like receptor 3, which is part of the innate immunity, is activated by binding doublestranded (ds) RNA....
Read More
Tissue-engineered xenografts represent a promising treatment option in heart valve disease. However, inflammatory response leading to graft failure and incomplete in vitro repopulation with recipient cells remain challenging. Shock waves (SWs) were shown to modulate inflammation and to enhance re-epithelialization. We therefore aimed to investigate whether SWs could serve as a feasible adjunct to tissue...
Read More
The main aim of our research in this field is to regenerate infarcted myocardium, respectively the hibernating myocardium. We use LAD ligation models – chronic, acute and ischemia/ reperfusion – in different species. Besides regeneration we work on the induction of angiogenesis as well as vasculogenesis. Click here to read more.
Read More
CBS News Stephanie Stahl reports. (Video) Click here to view video.
Read More
Regeneration of infarcted heart muscle remained a dream of modern medicine despite of comprehensive research on stem cell and gene therapy. Both technologies have not gained broad clinical use due to limited clinical results and significant side-effects including tumor formation. Click here to read more.
Read More
Most, if not all, cells of the cardiovascular system secrete small, lipid bilayer vesicles called exosomes. Despite technical challenges in their purification and analysis, exosomes from various sources have been shown to be powerfully cardioprotective. Indeed, it is possible that much of the so called “paracrine” benefit in cardiovascular function obtained by stem cell therapy...
Read More
Tissue-engineered xenografts represent a promising treatment option in heart valve disease. However, inflammatory response leading to graft failure and incomplete in vitro repopulation with recipient cells remain challenging. Shock waves (SWs) were shown to modulate inflammation and to enhance re-epithelialization. We therefore aimed to investigate whether SWs could serve as a feasible adjunct to tissue...
Read More
Mechanical stimulation of acute ischemic myocardium by shock wave therapy (SWT) is known to improve cardiac function by induction of angiogenesis. However, SWT in chronic heart failure is poorly understood. We aimed to study whether mechanical stimulation upon SWT improves heart function in chronic ischemic heart failure by induction of angiogenesis and postnatal vasculogenesis and to dissect underlying mechanisms....
Read More
1 2 3 4